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Transonic flow past a step located on the lower wall of a channel and modeling the airfoil is considered. The
stability of stationary flow to small changes in the Mach number at the outlet of the channel is investigated
numerically. The existence of special regimes in which flow is unstable, i.e., insignificant perturbations of the
boundary conditions cause a qualitative change in its structure, has been established.

Airfoils having a small curvature in the central part are characterized by a high sensitivity of the flow pattern
to a change in the parameters of the incoming flow [1–4]. It has been shown in [5] that this phenomenon is largely
determined by the structural instability occurring under certain boundary conditions. Consideration was given to the
airfoil

y (x) = ymax (1 −  2x − 3 3) ,   1 ≤ x ≤ 2 , (1)

in the channel 0 < x < 3 and 0 < y < 1 with a prescribed Mach number Mout
′  in the outlet cross section. The existence

of the singular value Ms of this parameter causing restructurization of the flow was established. Two supersonic zones
were observed near the airfoil when Mout

′  < Ms; they varied continuously with increase in Mout
′ . If Mout

′  was insignifi-
cantly higher than Ms, these two zones abruptly coalesced into one zone. As Mout

′  increased further, the flow varied
continuously again. If Mout

′ , being initially higher than Ms, decreased and became lower than the value Ms, the super-
sonic region, conversely, broke down abruptly into two zones.

Thus, it has been shown that beyond a small vicinity of the singular value Ms, transonic flow is stable to
small changes in the boundary conditions. At the same time, as Mout

′  becomes lower than Ms, we have restructuriza-
tion of the flow, which is caused by the impossibility of the intermediate stationary pattern of flow with two super-
sonic zones having one common point on the airfoil. The reason for the impossibility of this pattern is that F, i.e., the
point of intersection of a shock wave closing the first supersonic zone and the airfoil, cannot coincide with the initial
point A of the second supersonic zone (Fig. 1a) since the closing shock wave approaches the airfoil in the normal di-
rection and the velocity of the flow behind it must necessarily be subsonic.

In this work, we study unstable regimes of transonic flow near an airfoil whose curvature has a minimum at
the central point but does not vanish, unlike [3–5].

Formulation of the Problem. We consider an inviscid two-dimensional flow of a compressible gas in the
channel 0 < x < 3 and 0 < y < 1 with parallel walls. On the lower wall, there is a small smooth step modeling an airfoil
and determined by the polynomial

y (x) = ymid [1 − p (2x − 3)2
 − q (2x − 3)4

] ,   1 ≤ x ≤ 2 ,   p + q = 1 . (2)

It is obvious that y(1) = y(2) = 0 and the curvature of the central part of the airfoil increases with increase in the
parameter p and decrease in q = 1 − p. When p = 1, the airfoil (2) coincides with a parabola passing through the
points x = 1 and x = 2 of the x axis and having its peak at the point x = 1.5, y = ymid.

Inviscid-gas flow is described by a system of Euler equations for the density ρ(x, y, t), the velocity compo-
nents u(x, y, t) and v(x, y, t), and the internal energy of a unit volume e(x, y, t). The setting of the boundary condi-
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tions in the problem in question is the same as in [6, 7]: the nonflow condition is specified on the channel walls, the
static pressure in the flow pout is prescribed at the outlet of the channel, and the zero value of the vertical velocity
component v(0, y, t) = 0 and the values of the entropy and enthalpy are prescribed at the inlet of the channel. The
values of the parameters at the initial time t = 0 are additionally prescribed in calculating nonstationary flow.

It is convenient to characterize the static pressure pout at the outlet of the channel by the arbitrary Mach num-
ber Mout

′  obtained from the isentropic relation p0
 ⁄ pout = [1 + (γ − 1) Mout

2′ /2]γ
 ⁄ (γ−1), where the total pressure p0 is de-

termined by the boundary conditions at the inlet of the channel.
To numerically solve the problem formulated we employed the same method as in [4, 8]. The nonstationary

solution was calculated using an ENO2 difference scheme of second order of accuracy [9]. The nonuniform computa-
tional grid was formed by vertical straight lines and lines produced by subdivision of the variable channel width into
a fixed number of steps. Their size ∆x = ∆y was constant in the central part of the channel and it increased in the
direction of the upper wall and in the region of subsonic flow near the inlet and outlet cross sections of the channel.

In the series of calculations carried out, the relaxation of the flow and its reaching the stationary regime were
observed after 4⋅104–1.8⋅104 time steps depending on the initial conditions and the value of p in (2), i.e., on the airfoil
selected. We employed a 401 × 171 grid with a step of ∆x = ∆y = 0.004 in the central part of the channel. The cal-
culations on a finer (601 × 341) grid showed that it does not yield a substantial improvement in the accuracy of de-
termination of the regimes of structural instability; however, the time it takes to compute the stationary solution
increased by almost an order of magnitude. On the other hand, the employment of computational grids with larger
steps led to an appreciable error in computation of the position of shock waves and singular Mach numbers, particu-
larly in the variants where the size of supersonic regions was comparable to the size of several cells of the grid.

Results of Numerical Modeling. Figure 1a shows a fragment of the transonic flow obtained near the airfoil
(2) with p = 0.3 for Mout

′  = 0.7439. As is seen, in this case there are two local supersonic zones that are d C 0.06
apart. The length of the segment FA indicated in Fig. 1a is taken as the distance d between the zones. The compres-
sion wave coming from the center of the airfoil due to the minimum of its curvature intersects the shock wave and
causes a downstream departure of a sonic line from it. This line then bends in the direction of the airfoil; there forms
a second shock wave arranged almost perpendicularly to the flow and closing the supersonic wave.

As Mout
′  decreases, the qualitative pattern of flow remains the same as in Fig. 1a; only the distance d some-

what increases. However, with an increase of 0.0001 in Mout
′  = 0.7439 the flow becomes unstable. The shock wave

closing the first supersonic region shifts downstream and reaches the sonic line beginning at point A with the resulting
coalescence of the supersonic zones. In the united region, we observe multiple reflection of the skew shock wave from
the airfoil and from the line M(x, y) = 1 separating the supersonic region from the subsonic region (Fig. 1b). The flow
field obtained is presented in Fig. 1b for Mout

′  = 0.7441. We observe the deflections of this line at reflection points,
which corresponds to flow diagrams including the points of its return or inflection that have been considered in [3].

Fig. 1. Fragment of transonic channel flow. Lines of constant values of the
Mach number near the airfoil (2) with p = 0.3 and ymid = 0.06: a) Mout

′  =
0.7439 and b) 0.7441.
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As Mout
′  increases further, the qualitative pattern of flow changes insignificantly. We emphasize that both flow

fields presented in Fig. 1 are stable to small perturbations of Mout
′  of the order of 10−5 and of the order of 10−4 if

the value of the Mach number does not become lower than Ms = 0.7440. The sensitivity of the flow pattern to a
change in Mout

′  can be characterized by a change in the height h3 of the third deflection in the shape of the supersonic
region when Mout

′  > Ms, and in the distance d between the supersonic zones when Mout
′  < Ms (Fig. 2).

The analysis of unstable regimes of transonic flow for higher values of the parameter p in formula (2) has
shown that the height of the supersonic subregions decreases and up to three (in stationary regimes) or even four (in
nonstationary transitions) supersonic subregions can be realized instead of two local supersonic zones. Accordingly,
several singular values of Mout

′  which lead to an unstable flow and an abrupt change in the flow pattern can exist for
one and the same airfoil (2) with a fixed p.

Unlike the case presented in Fig. 2, the flow structure for other p can change with a hysteresis of the Mach
number prescribed at the outlet of the channel. Therefore, different stationary patterns of flow can be realized for one
and the same Mout

′  depending on whether a given regime has been obtained with increase in the Mach number or with
decrease in it. This result elucidates the physical reasons for the occurrence of nonunique stationary transonic flows
near airfoils obtained in the numerical investigations of some authors [2, 10].

This work was carried out with financial support from the Russian Foundation for Basic Research, grant No.
03-01-00799.

NOTATION

d, distance between supersonic zones; e(x, y, t), internal energy; h3, height of the third deflection in the shape
of the sonic line; M, Mach number; Mout

′ , arbitrary Mach number at the outlet of the channel; Ms, singular Mach
number; p and q, parameters in formula (2); pout, pressure at the outlet of the channel; p0, stagnation pressure; t, time;
u(x, y, t) and v(x, y, t), components of the velocity vector in the direction of the x and y axes; x, y, Cartesian coordi-
nates; ymid, thickness of the airfoil at the central point; ∆x and ∆y, sizes of the grid cells in the central part of the
channel; γ, adiabatic exponent; ρ(x, y, t), gas density. Subscripts: max, maximum; mid, central (middle); out, outlet; s,
singular; 0, corresponds to the total pressure.
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